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Abstract—An investigation of natural convection in a porous medium heated from below or above, and

bounded by perfectly conducting side walls, shows that a motionless solution is impossible. except for a

particular side wall temperature variation. Hence, convection occurs regardless of the value of Rayleigh

number and regardless of whether the fluid is heated from below or from above. Numerical solutions for

identical uniform temperatures imposed on both side walls (no temperature difference between the side

walls) show that when heating from below, a subcritical flow results mainly near the side walls, which
amplifies and extends over the entire domain under supercritical conditions.

1. INTRODUCTION

THE scoPE of this study is to analyze the effect of
perfectly conducting side walls on natural convection
in porous media. General conclusions are drawn from
the analysis of the governing equations and numerical
solutions are presented for a two-dimensional rec-
tangular porous domain, of which results are com-
pared to analytical solutions obtained for imperfectly
insulated side walls, showing good qualitative agree-
ment.

Natural convection in porous media is of con-
siderable interest in geophysics and engineering. Heat
transfer in geothermal systems (see Cheng [1, 2] for a
comprehensive review) and the insulation technology
may serve as examples for the occurrence of this
phenomenon. Natural convection in porous media
has been studied in the past under the following con-
ditions: (a) heating from the side, (b) heating from
below (or above), and (c) the combined heating from
the side and above.

Different temperatures imposed on the side walls
(case (a)) were studied by Bejan and Tien [3]. It was
shown that such conditions lead to a unicellular fluid
motion. With an increase in the Rayleigh number, the
intensity of the flow amplifies and different flow and
heat transfer regimes can be identified. Heating from
below (case (b)) is generally treated as a stability
problem. This problem was investigated for different
top and bottom boundary conditions (see refs. [4-9]).
1t was found that fluid motion is possible only if the
Rayleigh number exceeds a critical value. Theoretical

and experimental investigations show that super-
critical Rayleigh number values lead to multicellular
fluid motion. No motion is expected when the fluid is
heated from above, regardless of the Rayleigh
number. In such cases the vertical temperature gradi-
ent resulting from heating the upper boundary and/or
cooling the lower boundary is considered to be a sta-
bilizing temperature gradient. The effect of a weak
heat leakage through imperfectly insulated side walls
on natural convection in a rectangular porous domain
heated from below was investigated analytically by
Vadasz and Braester [10]. The analytical solution
obtained through the weak non-linear theory showed
that a small heat leakage through the side walls
directly affected the solution at the leading order and
the preferred wave number of convection. A com-
panison study regarding multiple solutions and the
corresponding bifurcations resulting from analytical
solutions to this problem was presented by Vadasz
[11].

The combined effect of heating from the side and
above (case (c)), a case of practical interest in thermal
insulation design, was studied by Kimura and Bejan
[12]. Tt was expected that the convection driven by
differentially heating from the sides could be sup-
pressed by imposing a stabilizing vertical temperature
gradient. Numerical solution showed that convection
can be suppressed only partly. Kimura and Bejan
concluded that ... the side driven natural convection
does not disappear completely even when the vertical
stabilizing gradient is greater than the destabilizing
horizontal gradient”. Similar conclusions were
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NOMENCLATURE
&, unit vector in the x direction w Darcy’s volumetric flux component in the
e, unit vector in the y direction z direction
€, unit vector in the - direction X position vector, equal to xé, +yé, +z¢,.
e, unit vector in the direction of the gravity

acceleration

g+ gravity acceleration vector

He  height of the domain

K« permeability

Ly length of the domain

L aspect ratio, defined as
L= L*/H*

M,  aratio between the heat capacity of the
fluid and the effective heat capacity of

the domain

p pressure

Da pressure related to a hydrostatic and
adiabatic reference value

q Darcy's volumetric flux

Ra  Rayleigh number

r a numerical parameter, defined as
r=A1/AL?

s a numerical parameter, defined as
s=A12AL

S a vector, defined in the text following
equation (6)

t time

T temperature

u Darcy’s volumetric flux component in the
x direction

Greck symbols
2.+  effective thermal diffusivity of the porous

medium
B thermal expansion coefficient
£ an expansion parameter, defined in

the text following equation (18)
0 side walls heat flux, defined by
equation (18)
M dynamic viscosity

Vi kinematic viscosity

Dx density

v stream function, defined in the text
preceding equation (16)

) vorticity vector, defined in the text

preceding equation (6).

Subscripts

* dimensional quantity
reference value
related to the bottom
characteristic value
effective value
related to the horizontal
related to the top
related to the side walls.
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achieved experimentally by Ostrach and Raghavan
[13] for fluid in a non-porous domain.

If this conclusion is generally true, then by lowering
the horizontal temperature difference on the lateral
boundaries the flow should not stabilize completely.
The limit of such a process would be a zero horizontal
temperature difference, i.e. equal temperatures im-
posed on the lateral walls. This is recognized to be
the case of heating from below (or above) with per-
fectly conducting lateral boundaries. Practically, this
situation is obtained particularly in thin lateral walls
made of materials which have high thermal con-
ductivity. This is the subject of the present inves-
tigation. Through the analysis of the governing equa-
tions we show that except for a particular linear
temperature variation on the lateral boundaries, it is
impossible to obtain a fluid motionless state under
perfectly conducting lateral boundary conditions. A
numerical solution of the governing equations is pre-
sented for identical uniform temperatures imposed on
both lateral boundaries. Its results compare favorably
with the qualitative analytical solution obtained for
the case of imperfectly insulated side walls.

2. THE GOVERNING EQUATIONS AND
PROBLEM FORMULATION

We consider an isotropic and homogeneous porous
matrix with respect to permeability and to thermal
conductivity. Except for fluid density, which is con-
sidered to be temperature dependent, all other prop-
erties, e.g. permeability and thermal conductivity, are
assumed to be constant. The temperature difference
between the solid matrix and the fluid, within a rep-
resentative elementary volume, around a point is
assumed to be negligible [14]. The dispersion of heat
is considered small in comparison to the advective and
conductive terms in the energy equation [15]. We also
assume Oberbeck—Boussinesq’s approximation [16,
17]. Under these conditions the governing equations
are:

(i) Equation of continuity
V-q=0 4y
(i) Momentum balance equation (Darcy’s law)

q= —[Vp,+RaTV(&, X)] (2
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(i) Energy balance equation
al

cT N
& TQVT=VT 3)

where the dimensionless variables are defined as
X=Xy/Hy, 1= t*zc*/H;M,-, qQ=quH: M/a4,

Da =F:.*k*Mv'/l1*9‘c*~ T= (T*—TO)/ATU

€, = g /I8« 4)
and the Rayleigh number is defined in the form
Bx AT gsk« H
Ra = PRATYsks s\ (5)
Hox Vi

In equations (4) and (5). q« is Darcy’s flux, t4 is time,
X+ denotes the position vector, A is a characteristic
length of the flow domain (e.g. the height, when a
rectangular domain is considered), k« is the per-
meability, js is the dynamic viscosity of the fluid, T,
and AT, are a reference temperature and a charac-
teristic temperature difference, respectively, g4 is the
gravity acceleration vector and p, is the pressure
related to an adiabatic hydrostatic reference value. In
the definition of the Rayleigh number, equation (5).
ve is the kinematic viscosity of the fluid. o4 is the
effective thermal diffusivity, M, is the heat capacity
ratio, gs is the absolute value of the gravity accel-
eration and f, is the thermal expansion coefficient.
We concentrate the discussion on generally closed
domains., D, bounded by impermeable boundaries,
B. These kinds of boundaries imply the boundary
condition q,*é,|z = 0.

A condition for the existence of a motionless solution

For the subsequent analysis it is convenient to
define the vorticity vector » as w =V xq, and by
applying the curl operator (V x ) to equation (2) one
obtains the vorticity equation

w = —RaS 6)

where the vector S is defined as S = V x (T¢,). Equa-
tion (6) shows that the vorticity, w, is obtained by
multiplying the Rayleigh number by the vector S.
Since the vector S directly affects the vorticity, it is
of interest to discuss its properties. In a Cartesian
coordinate system with the = axis oriented upwards,
the vectors €,. S and the horizontal thermal gradient,
VuT, are expressed as: é, = —¢,; S = —(3T/dy)é,
+(8T/0x)é,; VuT = (0T/dx)e,+(0T/dy)é,, respect-
ively, and the position vector X is defined as X
= vé,+yeé,+z¢,, where ¢,, &, and é, are the unit
vectors in the x, y and z directions, respectively.
The following properties of the vector S hold in
any domain De R* and are direct consequences of the
definitions of &,, S and V,, T:

(P1) The vectors S and VT are orthogonal, i.c.
SVuT=0VYXeD.

(P2) The magnitudes of the vectors S and V,, T are
equal,ie.S*S=V,T-V, TV XeD.
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(P3) Both vectors S and V., T are orthogonal to
the gravily acceleration vector, €,. i.c. S*é, = 0 and
VuyT-é, =0V XeD.

The following conclusions based on the properties
(P1) and (P2) arc important for the subsequent stages
of this analysis.

S=0=V,T=0. (N

A sufficient condition for the occurrence of natural
convection is thercfore expressed in the form

S#0=q#0. (8)
Now by using (7) one obtains
VT #0=>q#0. 9)

The main conclusion resulting from (9) is that the
necessary condition for the existence of a motionless
state is: VyT =0V XeD. As a result, whenever
horizontal thermal gradients exist, natural convection
currents are produced. An example of cases when
natural convection exists unconditionally are vertical
layers or rectangular domains subject to different
values of temperature at the side walls. As a result of
this horizontal temperature difference the heat will
be transferred initially mainly by conduction, thus
creating horizontal thermal gradients in the fluid-satu-
rated porous domain, i.e. V,, T # 0. These horizontal
thermal gradients create unconditional convection
based on the previous analysis. A horizontal infinite
layer or a rectangular porous domain heated from
below are examples of cases when the equations and
the appropriate boundary conditions can be satisfied
by motionless conduction solutions, leading to van-
ishing of any horizontal thermal gradients in the
domain. In these cases the motionless conduction
solutions represent the equilibrium or basic solutions,
whose stability should be investigated. Obviously. due
to the non-linear nature of the thermal convection
effect, represented by the non-linear coupled differ-
ential equations, non-uniqueness of the possible solu-
tions may result and the stability analysis may con-
tribute to determine which solution is expected to
occur.

For horizontal infinite layers or rectangular porous
domains with perfectly insulated side walls heated
from below, the linear stability analysis shows that
fluid motion is possible only if the Rayleigh number
exceeds a critical value. Theoretical and experimental
investigations show that supercritical Rayleigh num-
ber values lead to multicellular fluid motion. The linear
stability analysis does not usually predict the ampli-
tude and direction of the convective flow. No motion
is expected when the fluid is heated from above,
regardless of the value of the Rayleigh number. In
such cases the vertical temperature gradient resulting
from heating the upper boundary and/or cooling the
lower boundary is considered to be a stabilizing tem-
perature gradient.

However, for perfectly conducting side walls differ-
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F1G. 1. A two-dimensional porous domain with perfectly

conducting side walls.

ent conclusions can be drawn. Let us consider a rec-
tangular domain De R* (Fig. 1) and the following
boundary conditions: T= T,atz=0,T=T,atz = |
and 7= T (z) at x = 0 and x = L. [t can be observed
that the same temperature is imposed on both side
walls so there is no horizontal temperature difference
between the side walls. One may distinguish between
heating from below, i.e. T, = | and T, = 0, and heat-
ing from above, when T, = 0 and 7, = 1. Then it will
be shown that with perfectly conducting side walls,
except for the linear distribution of temperature on the
side walls, T, # (T,—T,)z+ Ty, natural convection
occurs independently of the value of the Rayleigh
number (obviously different from zero). To show this,
the proof is given by negation for the extreme case of
heating from above. The proof of heating from below
is similar. Therefore, upon using 7, =0 and T, = |
pertaining to heating from above, it will be proved
that if

T,(2) #:= (10)
then

q#0. (m

Let us assume that under condition (10) a motionless
solution (q = 0) is possible. Then the heat is trans-
ferred only by conduction and the steady state energy
equation (3) reduces to

VT =0. (12)

However, the necessary condition for the existence
of a motionless state resulting from equation (9) is
expressed for a two-dimensional domain in the form

oT
°l _ovXeD.

ox

Moreover, if (13) holds then also T /dx? = 0V X e D.
Substitution of these conditions into (12) yields

(13)

dr
—5 =0 (14)
of which solution is given by the linear profile
T=:z. (15)
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This solution, which is consistent with a motionless
state (q = 0), satisfics the boundary conditions at
x=0, L if and only if (i) T,=: or (i)
(¢T/¢x) .o, = 0, The first case, (i). is contradictory
to the data as expressed by (10). The second case.
(ii), does not correspond to perfectly conducting side
walls. We may conclude that the results cxpressed
by conditions (i) and (ii), found by assuming that a
motionless state is possible, are contradictory to the
basic assumptions. Therefore, a motionless state is not
possible in connection with the data considered.

A prescribed constant temperature on the lateral
boundaries, T = T, = const. (the same valuec at both
lateral walis), is an example of a problem for which a
motionless solution is not possible, regardless of the
vertical temperature gradient resulting from the
imposed top and bottom boundary conditions. Prac-
tically, this situation is obtained particularly in thin
lateral walls made of materials which have high ther-
mal conductivity. This specific case is considered in
the following numerical solution. However, before
presenting the numerical solution a comparison
between this case and the analytical results obtained
for the case of imperfectly insulated side walls is per-
formed.

3. A WEAK HEAT FLUX THROUGH THE
SIDE WALLS

For a constant prescribed temperature on the side
walls (perfectly conducting side walls). a strong heat
flux occurs on the lateral walls. However, with imper-
fectly insulated side walls the lateral heat flux is weak
and an analytical solution is possible through the
weak non-linear theory. The detailed analysis and
solution for the imperfectly insulated side walls case
was presented by Vadasz and Braester [10]. Only the
minimum necessary results will be repeated here for
the purpose of comparison with the perfectly con-
ducting side walls case. The governing equations (1),
(2) and (3) for a two-dimensional rectangular domain
were expressed for convenience in terms of a stream
function and temperature. A Cartesian coordinate
system was selected such that the vertical axis, =, is
collinear with the gravity axis and directed upwards ;
then €, = —é&, and in (2) &,-X = —z. Applying the
curl operator to equation (2) and using the definition
of the stream function Y : u = /0=, w= —dy/dx,
where u# and w are Darcy’s flux components in the x
and :z directions, respectively, one obtains from (2)
and (3)

N oT
V3 +Rao = (16)
cX
oT _, Y oT oy oT
E—VT+EE_EE_O' n

In terms of ¢, the flow boundary conditions are ex-
pressed in the form: ¢y = 0 V Xe B, and the thermal
boundary conditions for heating from below are
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=0:T=1;-=1:T=0; x=0: ¢Ticx = 0,(2),
x=L: ¢T/ex =0,(2). The side walls heat flux is
represented by a sinc Fourier cxpansion in the form

0y(z) = Z Oy sin(knz): 0,(2) = Z 0, sin(knz).

A= k=1

(18)

To be consistent with a basic motionless state. the side
wall heat leakages 0, and (), arc assumed Lo be small,
e 0y(z) «< 1, 0,{(z) « 1 ¥V ze[0, 1]. The dependent
variables ¢ and T were expanded in a power scrics
in terms of a small paramecter. ¢ defined as &’ =
(Ra— Ra.)/Rua, where Ra, is the characteristic value
ol Ru obtained from the lincar stability analysis,
Ru, = =i +n°L7) /m L. where m and n are the
wave numbers in the v and - directions, respectively,
and L is the aspect ratio (length/height). The Fourier
coefficients in (18) were also cxpanded in a power
series of ¢ and the Rayleigh number was expanded in
a finite power scrics. Therefore, the expansions arc
expressed in the form

W. T.00.0,] =" T 0% 08

-{-f[l//(” T(I» ()(}I) (Il
+l»,':[l//(3]. T(Zi. ()(“i_)‘ ()1[]2/\)
+ g [{z/(‘) T(‘! {}(“:)

A1+ OGY
(19)

Ra = Ra,+ Ra™ [ +¢*+ - +7] (20)

where '" and 7' represent the basic motionless
solution, i.e. Yy'" =0 and T =l —=z. In order to
avoid an inconsistency and occurrence of resonance
at orders £ and 7, 04, 04V, 042" and 042 must vanish.
Thus the heat leakage through the side walls was
inlroduccd atorder &%, i.e. 00 # 0 and 043 # 0, while

0L = 089 = 04 = 053 = 0. Introduction of these
cxpansions into equations (16) and (17) and collecting
terms which include like powers of ¢ leads to a hier-
archy of partial differential equations for the different
orders. The solutions of the homogeneous equations
at order & subject to homogeneous boundary con-
ditions lead to the following eigenfunctions:

Yt = A (1) sin mrx/L) sin (nnz)

T = B! (1) cos (mmnx/L)sin (nm2)

lllll

where the amplitudes 4!} and B! are allowed to vary

slowly over the large time scale © = £°t in order to
overcome time non-uniformity of the solutions. At
this stage the amplitudes are still undetermined and
their values will be obtained later from a solvability
condition of the equations at order &°.

The qualitative form of the solutions at order &7 is
the same as for order ¢ except for an additional term,
B'Z, sin (2n7z), in the expression for 7' which occurs
as a result of the non-homogeneous type ol equation
for T'%. The equations at order ¢* are
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VW'Y 4+Ra. . = —Rd™ - (21)
Cx cx
£3) (83 A7ty LU ey
g t{/ cT +(l// T P cT
Ot ‘o ox A
02 Aeh W ATeh
cytt 6T gttt orT
+un R — T a (22
¢z X [GAY ¢z

and their right-hand side represents their non-homo-
geneous part, which consists of known lower order
solutions ¢' ", T'", y**" and T'* and their derivatives.
At this order the heat leakage through the side wails is
introduced leading to the following boundary con-
ditions ;

Y sin (krz)

A=

X=0:0TCx =0"(z) =

and
):‘ )( )- Z H.] sin (kn:).

=1

Xx=L:0TVi0x

The remaining boundary conditions are homogen-
cous. ie.  Y'V0,0) =y L) = 0) =t
(. )=0 and T'"(n.0)= T“’(\' 1y=0. Since
equations (21) and (22) at order &* are non-homogen-
eous versions of the equations solved at order & a
solvability condition must be satisfied. This condition
constrains the amphlitude of the solution at order &
and enables 1ts determination. The solvability con-
dition is derived by multiplying (21) by '" and
(22) by Ra,T'", integrating these equations over the
domain xe{0. L], -€[0. 1] and adding them. As a
result of these operations and by somc mathematical
manipulations, use of the second Green's identity,
integration by parts, boundary conditions and the
solutions at O(z), the solvability condition for the
steady state may be presented in the simplified form

(23)

where the following notation is used {or convenience:

AP —EA =y

5

n .
8L*"

Y= A= —emAll:

E=8(m*+n*L*)RajRa,—1];:

6(m:+nzL3) .,
n= C = 0, = (= 1)M0,,]
n
O, = 53()(0':.): 0,.,= 5]()(/.'}1)- (24)

In (24), A represents the O(g) amplitude. ¢ is the
measure of how distant Ra is from its critical value
(E=0at Ru= Ra., ¢ <0 for Ru< Ra, and >0
for Ra > Ra.) and n represents the small O(e?) heat
leakage through the side walls. As one may observe
from the expression of 57 in (24), in spite of the general
expansion for the heat leakage through the side walls
which was allowed to include all possible Fourier
modes, only thosc modes which reinforce the natural
modes of convection, i.e. k = n, affect the amplitude
equation through j. In the following, the particular
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case of symmetrical heat leakage through the side
walls will be considered. i.e. 0,,= —0,,= 0, and
= —[32m +n’L)0,]/rVm=2,4.6,8....:4=0
Vm=1 3.5 7...as this is associated with sym-
metrical heat fluxes occurring in the perfectly con-
ducting case. For perfectly insulated side walls. 5 = 0.
lcading to the amplitude solution of equation (23) in
theform 4= +&'*for &> 0 (Ra> Ru)yand A =0
for ¢ <0 (Ru < Ra,.). This solution is represented by
the dotted curves in Fig. 2. showing a bifurcation of
the amplitude solution towards two possible
branches. As a result. the direction of the flow (clock-
wise or anticlockwise) for supercritical conditions is
undetermined as the amplitude of the convection, A.
can be positive or negative corresponding to the
respective branch of the bifurcation (4 = +&'7 or
A = —'7). For the imperfectly insulated case n # 0
and according to (23) the motionless state, 4 =0,
does not satisfy the equation. The solution of the non-
homogeneous cubic equation (23) is represented by
the full curves in Fig. 2. It can be observed that the
sharp transition at the critical value of Ra(é = 0) in
the perfect case (n =0) is replaced by a smooth
transition through Re. (¢ = 0) in the imperfect case
(n # 0). In the latter case (with imperfectly insulated
side walls) a non-zero subcritical amplitude was
obtained for Ra < Ra.. For supercritical Ra values
(Ru > Ra.). a unique steady solution was obtained
as long as 0 < & < 3(y/2)*". This unique solution is
independent of the initial conditions associated with
the corresponding time-dependent amplitude equa-
tion {see Vadasz and Braester [10]) and therefore in
this range of & values, the flow intensity and direction
are absolutely controlled by the boundary imperfection
through n. The higher the side walls heat flux the wider

P. VADASZ er al.

the domain for ¢ where this conclusion applies. An
immediate implication resulting from this solution is
that a convection cell rotates clockwise or anti-
clockwise depending on whether the heat flux at the
side walls is directed outwards or inwards to the
domain. For example, considering the first mode of
the sine series representing the side walls heat flux
with a positive value of 0,, i.e. (éT/fx),_o=0,
xsin(nz)and (CT/¢x),_, = —0,sin (nz) with0, > 0,
a heat flux directed from the domain outwards is
obtained on the side walls. As a result, according to
the conclusions of the weak non-linear solution this
heat flux should create an anticlockwise convection in
the vicinity of the left side wall (at x =0) and a
clockwise convection near the right side wall (at
x = L). When 0, is negative (0, < 0), the flow direc-
tion of the convection cells reverses, i.e. it is clockwise
near the left side wall and anticlockwise near the right
side wall. An important particular case is when the
fundamental is absent in the sine series expansion of
the side walls heat flux. Then the second mode of the
sine series becomes dominant, i.e. (67/dx),_, = 0, sin
(2n2), (CT(Cx),_, = —0, sin (2rz) with 0, > 0; this
implies that the heat flux is directed outwards at the
lower half of the domain, ie. for ze[0, 1,2] and
inwards at the upper half of the domain, i.e. for
ze[1/2. 1]. This type of heat flux induces, according
to the weak non-linear analysis, the second vertical
mode of convection consisting of two overlaying rows
of convection cells, the lower rotating anticlockwise
near the left wall and clockwise near the right wall
and the upper rotating clockwisc near the left wall
and anticlockwise near the right wall. Assuming that
these results will remain qualitatively unchanged even
for strong heat fluxes through the side walls they can

F1G. 2. Graphical representation of the amplitude sotutions in the -4 plane.



Natural convection in porous media

be applied for confirmation of the numerical results
obtained for the perfectly conducting case, to be pre-
sented in the next sections.

4. PERFECTLY CONDUCTING SIDE WALLS

A prescribed constant temperature on the side
walls, T = T, = const. (the same value at both side
walls), is an example of a problem with perfectly
conducting side walls. For this case a strong heat flux
occurs on the side walls, and a motionless solution is
not possible regardless of the vertical temperature
gradient resulting from the imposed top and bottom
boundary conditions.

The problem to be solved numerically is formulated
as a two-dimensional initial boundary value problem
in terms of the stream function i and temperature T,
according to equations (16) and (17). These equations
form the coupled system to be solved numerically
subject to the impermeability boundary condition
¥ = 0V Xe B and the thermal boundary conditions,
which consist of two different cases:

heating from below :

heating from above:

T,=0. T, =1 (25)

where T, and 7, are the bottom and top temperatures,
respectively. For each of the above cases three possible
subcases, related to the temperature on the lateral
boundaries, are considered

T, <0 (262)
| < T, (26b)
0<T, <l (26¢)

These three subcases correspond to the different direc-
tions of the heat fluxes at the side walls, e.g. when the
heating is from below, case (a) represents a heat flux
oriented from the domain outwards, case (b) is com-
patible with an inward heat flux at the side walls and
in case (c) the heat flux is outwards at the bottom half
of the side walls (z€[0, 1/2]) and inward at the top
half of the side walls (z€[1/2, 1]). For heating from
above the directions of the heat fluxes at the side
walls remain unchanged for cases (a) and (b) but are
reversed for case (c).

The numerical method of solution consists of a
fully implicit finite difference scheme for the energy
equation, (17), and centered differences for the elliptic
stream function, equation (16). A uniform spatial
mesh is used throughout the rectangular domain, i.e.
Ax = Az = AL. By using a single index notation to
represent the mesh points, the following difference
equation is obtained for the temperature:

i nT!Zn+a; T2 +a, T +ay, TH

+d, NTiiN=TiVi=12,....,MxN (27)
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where (M +1) and (N+1) are the number of mesh
points in the x and - directions, respectively. The
indices (j+ 1) and (j) denote the present and the
preceding time, respectively. The coefficients of 7/*!
are expressed by

oy = —(St,+r), a, = —(sw+r);

a;,; = (l +4l'), divy = (SH',—I');

(28)

Uiy = (SU;—1)

where r = AtjAL? s = At/2AL and u;, w, are the mesh
point values of the horizontal and vertical com-
ponents of q, respectively. The difference equation
(27) represents a system of (M x N) linear equations
for the (M xN) unknown values of temperature
T/*' (i=1.2,.... MxN) at the mesh points. The
components of the right-hand side vector consist of
the known values of temperature at the preceding time
step and additional terms which include the values of
the temperature on the boundary. These additional
terms should be transferred from the left-hand side of
(27) whenever boundary mesh points appear. The
coefficients, (28), form a five band matrix. However,
they depend on the solution of the stream function
equation through u; and w;. The difference equation
for the stream function is obtained from (16) by using
centered differences. Then, with the single index
notation, it can be expressed in the form

i+ ! i+ J+ 1 1+ 1 i+l
PV o ,7|_4'//: FTWii HWiiN

AL ‘
= Ra;—[T,’f&-T{L{,]Vi: 1,2,....MxN. (29)

This equation represents a system of (M x N) linear
equations for the unknown values of i/ * ! at the mesh
points i=1, 2, ..., M x N. The coefficients form a
five band matrix and they are constants; however,
the right-hand side of equation (29) depends on the
unknown temperature values 7/*'. Therefore, the two
systems of equations (27) and (29) are coupled. An
iterative procedure is used at every time step to solve
this coupling. Therefore, at every time step equation
(27) is solved for T/*' by using a band solver [19].
The values of u, and w; are initially identical to the
previous time step values, i.e. u/, w/. Then the tem-
perature values are introduced into (29) and a solution
for /*' is obtained by using the same band solver.
New values of u; and w; are calculated by introducing

7+ into the centered difference form of the stream
function’s definition. This procedure is repeated with
the new values of ; and w; until the maximum relative
difference between two consecutive iterations is less
than a prescribed tolerance ¢, i.e.

and

J+ j+ 1 )
max [AT/VUITI <& (30)
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Then the solution is advanced by an additional time
step until the steady state is achieved. according 1o the
following criterion:

m??(.\/.,\v [l'//:'+ : —Wl/lll/.” I]] <d

i— 1.2,

(3N

where J is the steady state prescribed tolerance.

5. RESULTS AND DISCUSSION

The results obtained by using the numerical method
of solution described in Section 4 are presented for
two different cases, i.e. heating from below (7, =1,
T,=0) and heating from above (T, =0, T, =1).
Three subcases related to each of the foregoing cases
are considered according to (26). Therefore, three
different values of the lateral wall temperature were
imposed :

(i) T, =—05. (i) T,=1.5, (i) T, =05

such that cases (i), (ii) and (iii) correspond to (26a),
(26b) and (26c). respectively.

P. VADASZ er al.

All the cases were solved for an aspect ratio of 1:2
(L = 2), and the following grid and tolerance par-
ameters: AL =005 (41x21), Ar=0.001 and
¢, = 0.001. Finer grids were occasionally used for
evaluation of accuracy and numerical error analysis.
All the runs started {rom motionless initial conditions
and from uniform initial temperature, which was set
equal to the value of T, corresponding to each specific
case.

5.1. Heating from below

Several runs have been performed for different
values of the Rayleigh number. Subcritical convection
was obtained when Ra = 30 (Ra. = 4n?), as a result
of the lateral boundary heat flux. A supercritical
steady state solution is presented in Fig. 3 for Ra = 50
and T, = —0.5, corresponding to subcase (i) and to
(26a). The isotherms and streamlines show that the
solution consists of two convection cells. The direction
of rotation of the left cell is anticleckwise as predicted
analytically through the weak non-linear solution.

Ra=50
T,=0
()
T, =-05 T, =-0.5
Tb = 1
T, =0
(b)
Tw = —‘05 Tw = —0_5
Tb = ]
A W, =443 [ Wi =-4.43

F1G. 3. Graphical representation of the numerical solutions for the flow and temperature fields for heating

from below. corresponding to Ra = 50 and 7, = —0.5. (a) Ten isotherms equally divided between T,

and T (T = —0.5, Ty = 1). (b) Ten streamlines equally divided between Y, and Wpuy (Wi = —4.43,
Wonge = 4.43).
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Ra =50
T, =0
(@
T,=15 T,=15
Ty=1
T, =0

T, =15

UU
N

[ ¥ =443

Ay, =443

F1G. 4. Graphical representation of the numerical solutions for the flow and temperature fields for heating
from below, corresponding to Ra = 50 and 7, = 1.5. (a) Ten isotherms equally divided between T, and

T (Twia = 0. T,

max

= 1.5). (b) Ten streamlines equally divided between ¢, and ¥, (Yqe = —4.43.

Vo = 4.43).

The solution for the same Rayleigh number
(Ra = 50), but for a different value of the lateral
boundary temperature, T, = 1.5, corresponding to
subcase (ii) and to (26b) is presented in Fig. 4. Two
convection cells were also obtained for this case
(T, = 1.5). However, the left cell rotates in a clock-
wise direction. This represents an opposite direction
of rotation when related to the first case (T,, = —0.5,
Fig. 3). This change in flow direction is related to the
side walls heat flux and is in complete agreement with
the analytical predictions corresponding to the weak
heat flux at the side walls. The flow field and tem-
perature solutions for T, = 0.5 and Ra = 200 are pre-
sented in Fig. 5, from which it is observed that the
second vertical mode of convection is obtained. This
second vertical mode, which consists of two rows of
convection cells, is also a characteristic result which
depends on the value of temperature imposed on the
lateral boundaries. In this case T,, = 0.5 ; thus the heat
flux at the side walls is directed outwards for the
bottom part of the domain and downwards for the

top part. This change of sign in the heat flux along
the lateral walls is responsible for the creation of the
second convection mode. A relatively large value of
Ra was needed to obtain convection cells throughout
the entire domain. When Ra = 100 and T, = 0.5, the
results show (see Fig. 6) that the convection is local-
ized in the vicinity of the lateral walls. The second
vertical mode was also obtained for this case. This is
the reason for the higher Rayleigh number needed for
convection to fill up the entire domain, since a higher
critical Rayleigh number corresponds to the second
vertical mode ([Ra.],.,= 16n7). For subcritical
values of Ra, convection appears as a localized effect
in the vicinity of the lateral walls. As the critical value
of Ra is reached, the convection spreads into the
interior region and fills the entire domain. This result
suggests that disturbances related to the first vertical
mode, which inherently exist when using a numerical
solution, were naturally suppressed by the heat flux
resulting from the side walls, therefore imposing the
second vertical mode of convection. However, it
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Ra =200
coarse grid (41x21)
T,=0
(a)
T, =05 T, =05
T, =1
(b)
T, =05

@Y, =-303

&y, =303

FiG. 5. Graphical representation of the numerical solutions

for the flow and temperature fields for heating from below,

corresponding to Ra = 200 and T,, = 0.5. (a) Ten isotherms

equally divided between T, and T, . (T, =0, T, = 1).

{b) Ten streamlines equally divided between ., and .,
(Yon = —3.03, Yoy = 3.03).

(a)

T. =05 T. =05

Ay, =117

aw,, =-117

FIG. 6. Graphical representation of the numerical solutions

for the flow and temperature fields for heating from below,

corresponding to Ra = 100 and T, = 0.5. (a) Ten isotherms

equally divided between T, and T, (Tin = 0, Tux = 1).

(b) Ten streamlines equally divided between y,,,, and .,
Wrin = — 117, Y, = 117).
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should be mentioned that this result was obtained
when using initial conditions of uniform temperature
and no initial flow in the domain. Therefore it is not
recommended to draw any general conclusion based
on this result.

A further verification of the accuracy of the numeri-
cal results was performed for this case by using a finer
grid (AL = 0.025, 81 x 41) with the same parameters
(Ra =200, T, =0.5). A comparison of the results
obtained by using the coarse (41 x 21) and the finer
(81 x41) grids showed that the maximum relative
differences in the values of the stream function and
temperature were less than 2%.

5.2. Heating from above

No convection is expected when heating from
above, if the lateral boundaries are insulated.
However, with perfectly conducting lateral bound-
aries pertaining to the present investigation, natural
convection occurs as proved in Section 3. The numeri-
cal steady state solution for this case, with Ra = 100
and T, = 1.5, is presented in Fig. 7. Two convection
cells were obtained, one adjacent to the left wall and
the other to the right wall. By changing the value
of the side wall temperature to T, = —0.5, it was
observed that the flow direction is reversed. An evalu-
ation of the accuracy of the numerical results was
performed for this case by using a finer grid
(AL =0.025, 81x41) with the same parameters
(Ra =100, T,= —0.5). The maximum relative
differences in the values of the stream function and
temperature between the coarse and the finer grids
were less than 6%. For T, = 0.5 and Ra = 200, the
second vertical mode is obtained (see Fig. 8), while as
expected the flow direction of the convective cells was
reversed when compared to the corresponding case
(26c) for heating from below (Fig. 5). However, no
more than two consecutive cells in the horizontal
direction could be obtained. They are located adjacent
to the lateral walls. This is the main difference between
heating from below and heating from above. For the
former (heating from below), multiple cells in the
horizontal direction were created for supercritical
values of the Rayleigh number and two horizontally
consecutive cells of limited lateral extent adjacent to
the side walls characterize the subcritical conditions.
However, for the latter case (heating from above),
only two horizontally consecutive cells adjacent to the
side walls were obtained with possible double cells in
the vertical direction depending on the value of T,.
These cells filled the entire porous domain. A finer
grid (AL = 0.025, 81 x41) was also used in this case
in order to evaluate the accuracy of the results leading
to a maximum relative difference of 2% in the values
of the stream function and temperature. The com-
parison of the numerical results corresponding to a
strong heat flux through perfectly conducting side
walls to the analytical solution obtained for a weak
heat leakage through imperfectly insulated side walls
shows qualitative consistency. As far as the flow direc-
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Ra=100
T,=1
(a)
Ty=15 T,=15
Tb=0
T,=1
(b)
T, =15 Ty=15

Tb = O
[ Yon=-36 A Yo =36
F1G. 7. Graphical representation of the numerical solutions for the flow and temperature fields for heating
from above, corresponding to Ra = 100 and T, = 1.5. (a) Ten isotherms equally divided between T,

and T, (Toin =0, T = 1.5). (b) Ten streamlines equally divided between ¢/, and ¥ . (Y in = —3.6,
Wmar = 3.6).

tion and the resulting wave number are concerned,
the results are identical. Moreover, the side walls heat
flux or temperature value was found to have a strong
control over the flow intensity, direction and wave
number. Therefore, carefully extending the validity of
the analytical solution that is restricted to weak heat
fluxes to the perfectly conducting side walls case pro-
vides a tool for a qualitative analysis even beyond the
validity domain of the solution.

The conclusions from the numerical study of
Kimura and Bejan [12], that the convection resulting
from the imposed side wall temperature difference
cannot be stabilized by imposing a stabilizing tem-
perature gradient through heating from above, was
confirmed by our results and even extended to the
extreme case where no side wall temperature differ-
ence is imposed. Even then convection persists as a
result of horizontal temperature gradients that are
created in the fluid domain. Since results similar to
Kimura and Bejan’s [12] were achieved experimentally
by Ostrach and Raghavan [13] for a fluid in a non-
porous domain, it remains for future research to show

whether our conclusions can be qualitatively extended
to fluids in non-porous domains as well.

6. CONCLUSIONS

A study of natural convection in a porous medium
domain heated from below or above and bounded
by perfectly conducting side walls was presented. A
comparison was performed between the perfectly con-
ducting side walls case associated with strong heat
fluxes through the side walls and analytical results
pertaining to the imperfectly insulated side walls case
(weak heat fluxes through the side walls). The com-
parison shows good qualitative agreement between
the analytical and the numerical results. It was shown
that for perfectly conducting side walls, except for a
particular temperature variation on these side walls,
natural convection occurs regardless of the value of
the Rayleigh number and regardless of whether the
fiuid is heated from below or from above. The numeri-
cal solutions for identical uniform temperatures
imposed on both side walls showed that when the
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Ra =200
coarse grid (41 x21)
T =1
(a)
T, =0.5 T, =05
T, =0

=143

@ ¥, =143 a¥

may

FiG. 8. Graphical representation of the numerical solutions

for the flow and temperature ficlds for heating from above.

corresponding to Ru = 200 and 7, = 0.5. (a) Ten isotherms

equally divided between T, and T, (T = 0. 7o = 1.

{b) Ten streamlines cqually divided between ,,, and ..
('l’nun = —1.43, wm.«\ = 1.43).

fluid is heated from below. a subcritical flow develops
mainly in the vicinity of the side walls. Under super-
critical conditions, the motion amplifics and extends
over the entire porous domain. The solution was
found to depend on the valuc of the temperature
imposed on the side walls. This dependence was
cxplained in terms of the sidc wall heat flux direction
by cxtending the validity of the analytical results
obtained for imperfectly insulated side walls to the
present case. When the fluid was heated from above
it was not possible to obtain a motioniess solution, a
result which is consistent with the analytical con-
clusions.
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