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Abstract-An investigation of natural convection in a porous medium heated from below or above. and 
bounded by perfectly conducting side walls. shows that a motionless solution is impossible. except for a 
particular side wall temperature variation. Hence. convection occurs regardless of the value of Rayleigh 
number and regardless of whether the fluid is heated from below or from above. Numerical solutions for 
identical uniform temperatures imposed on both side walls (no temperature difference between the side 
walls) show that when heating from below. a subcritical flow results mainly near the side walls, which 

amplifies and extends over the entire domain under supercritical conditions. 

1. INTRODUCTION 

THE SCOPE of this study is to analyze the effect of 
perfectly conducting side walls on natural convection 
in porous media. General conclusions are drawn from 
the analysis of the governing equations and numerical 
solutions are presented for a two-dimensional rec- 
tangular porous domain, of which results are com- 
pared to analytical solutions obtained for imperfectly 
insulated side walls, showing good qualitative agree- 
ment. 

Natural convection in porous media is of con- 
siderable interest in geophysics and engineering. Heat 
transfer in geothermal systems (see Cheng [I, 21 for a 
comprehensive review) and the insulation technology 
may serve as examples for the occurrence of this 
phenomenon. Natural convection in porous media 
has been studied in the past under the following con- 
ditions: (a) heating from the side, (b) heating from 
below (or above), and (c) the combined heating from 
the side and above. 

Different temperatures imposed on the side walls 
(case (a)) were studied by Bejan and Tien [3]. It was 
shown that such conditions lead to a unicellular fluid 
motion. With an increase in the Rayleigh number, the 
intensity of the flow amplifies and different flow and 
heat transfer regimes can be identified. Heating from 
below (case (b)) is generally treated as a stability 
problem. This problem was investigated for different 
top and bottom boundary conditions (see refs. [4-91). 
It was found that fluid motion is possible only if the 
Rayleigh number exceeds a critical value. Theoretical 

and experimental investigations show that super- 
critical Rayleigh number values lead to multicellular 
fluid motion. No motion is expected when the fluid is 
heated from above. regardless of the Rayleigh 
number. In such cases the vertical temperature grddi- 
ent resulting from heating the upper boundary and/or 
cooling the lower boundary is considered to be a sta- 
bilizing temperature gradient. The effect of a weak 
heat leakage through imperfectly insulated side walls 
on natural convection in a rectangular porous domain 
heated from below was investigated analytically by 
Vadasz and Braester [IO]. The analytical solution 
obtained through the weak non-linear theory showed 
that a small heat leakage through the side walls 
directly affected the solution at the leading order and 
the preferred wave number of convection. A com- 
parison study regarding multiple solutions and the 
corresponding bifurcations resulting from analytical 
solutions to this problem was presented by Vadasz 
[I II. 

The combined effect of heating from the side and 
above (case (c)), a case of practical interest in thermal 
insulation design, was studied by Kimura and Bejan 
[12]. It was expected that the convection driven by 
differentially heating from the sides could be sup- 
pressed by imposing a stabilizing vertical temperature 
gradient. Numerical solution showed that convection 
can be suppressed only partly. Kimura and Bejan 
concluded that *‘. the side driven natural convection 
does not disappear completely even when the vertical 
stabilizing gradient is greater than the destabilizing 
horizontal gradient”. Similar conclusions were 
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NOMENCLATURE 

unit vector in the .Y direction 
unit vector in the 1’ direction 
unit vector in the z direction 
unit vector in the direction of the gravity 
acceleration 

II’ Darcy’s volumetric flux component in the 
z direction 

x position vector, equal to si,+& +I,. 

gravity acceleration vector 
height of the domain 
permeability 
length of the domain 
aspect ratio, defined as 
L = L+c/H* 
a ratio between the heat capacity of the 
fluid and the effective heat capacity of 
the domain 
pressure 
pressure related to a hydrostatic and 
adiabatic reference value 
Darcy’s volumetric flux 
Rayleigh number 
a numerical parameter, defined as 
I’ = At/AL’ 
a numerical parameter, defined as 
s = Ar/2AL 
a vector, defined in the text following 
equation (6) 
time 
temperature 
Darcy’s volumetric flux component in the 
s direction 

Greek symbols 
xc* effective thermal diffusivity of 

medium 
B* thermal expansion coefficient 

the porous 

E an expansion parameter, defined in 
the text following equation (18) 

0 side walls heat flux, defined by 
equation (I 8) 

P* dynamic viscosity 
i’* kinematic viscosity 
P* density 
ti stream function, defined in the text 

preceding equation (16) 
B vorticity vector, defined in the text 

preceding equation (6). 

Subscripts 

F, 
dimensional quantity 
reference value 

b related to the bottom 
C characteristic value 
e effective value 
H related to the horizontal 
t related to the top 
W related to the side walls. 

achieved experimentally by Ostrach and Raghavan 
[I 31 for fluid in a non-porous domain. 

If this conclusion is generally true, then by lowering 
the horizontal temperature difference on the lateral 
boundaries the Row should not stabilize completely. 
The limit of such a process would be a zero horizontal 
temperature difference. i.e. equal temperatures im- 
posed on the lateral walls. This is recognized to be 
the case of heating from below (or above) with per- 
fectly conducting lateral boundaries. Practically. this 
situation is obtained particularly in thin lateral walls 
made of materials which have high thermal con- 
ductivity. This is the subject of the present inves- 
tigation. Through the analysis of the governing equa- 
tions we show that except for a particular linear 
temperature variation on the lateral boundaries, it is 
impossible to obtain a fluid motionless state under 
perfectly conducting lateral boundary conditions. A 
numerical solution of the governing equations is pre- 
sented for identical uniform temperatures imposed on 
both lateral boundaries. Its results compare favorably 
with the qualitative analytical solution obtained for 
the case of imperfectly insulated side walls. 

2. THE GOVERNING EQUATIONS AND 
PROBLEM FORMULATION 

We consider an isotropic and homogeneous porous 
matrix with respect to permeability and to thermal 
conductivity. Except for fluid density, which is con- 
sidered to be temperature dependent, all other prop- 
erties, e.g. permeability and thermal conductivity, are 
assumed to be constant. The temperature difference 
between the solid matrix and the fluid, within a rep- 
resentative elementary volume, around a point is 
assumed to be negligible [ 141. The dispersion of heat 
is considered small in comparison to the advective and 
conductive terms in the energy equation [I 51. We also 
assume Oberbeck-Boussinesq’s approximation [16, 
171. Under these conditions the governing equations 
are : 

(i) Equation of continuity 

v*q=o (1) 

(ii) Momentum balance equation (Darcy’s law) 

q = - [VP, + RaTV(t, * X)] (2) 
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(iii) Energy balance equation 

?T 
Z +q.VT= V’T (3) 

where the dimensionless variables are defined as 

X = LzIH*, f = m.~Iff:,M,-, q = qzeH+cM,-lr,e, 

P. = p;,&+M,-l~c*r,*. T= CT, - T,)/AT,. 

6, = g*/lg*l (4) 

and the Rayleigh number is defined in the form 

(5) 

In equations (4) and (5). q, is Darcy’s flux, t* is time, 
X* denotes the position vector, H, is a characteristic 
length of the flow domain (e.g. the height, when a 
rectangular domain is considered), X-* is the pcr- 
meability, /l* is the dynamic viscosity of the fluid, T, 
and AT, arc a reference temperature and a charac- 
teristic temperature difference, respectively, g, is the 
gravity acceleration vector and p:, is the pressure 
related to an adiabatic hydrostatic reference value. In 
the definition of the Rayleigh number. equation (5). 
\I* is the kinematic viscosity of the fluid. cam* is the 
cffectivc thermal diffusivity. M,- is the heat capacity 
ratio. g* is the absolute value of the gravity accel- 
eration and /I* is the thermal expansion coefficient. 
We concentrate the discussion on generally closed 
domains. D, bounded by impermeable boundaries. 
B. These kinds of boundaries imply the boundary 
condition qn*i,lR = 0. 

A conditioilJor the esistence qf‘a motionless solution 
For the subsequent analysis it is convenient to 

define the vorticity vector Q as UJ = V x q. and by 
applying the curl operator (V x ) to equation (2) one 
obtains the vorticity equation 

w= -RaS (6) 

where the vector S is defined as S = V x (R,). Equa- 
tion (6) shows that the vorticity. w, is obtained by 
multiplying the Rayleigh number by the vector S. 
Since the vector S directly affects the vorticity, it is 
of interest to discuss its properties. In a Cartesian 
coordinate system with the : axis oriented upwards, 
the vectors f,. S and the horizontal thermal gradient, 
V, T, are expressed as : 6, = -6, ; S = - (aT/dy)i?, 
+ (dT/Sx)G, ; V, T = (aT/&~)i, + (~?Tji?y)G,, respect- 
ively, and the position vector X is defined as X 
= s&f@, +I,, where 6,. 6, and 6, are the unit 
vectors in the x, J’ and z directions, respectively. 
The following properties of the vector S hold in 
any domain DE R’ and are direct consequences of the 
definitions of e,, S and V, T: 

(PI) The vectors S and V,T are orthogonal, i.e. 
S*V,T=OVXED. 

(P2) The magnitudes of the vectors S and VH Tare 
equal, i.e. S-S = V,T*V,,TV XED. 

(P3) Both vectors S and V,,T are orthogonal to 
the gravity acceleration vector. i,, i.e. S.6, = 0 and 
V,T*~,=OVXED. 

The following conclusions based on the properties 
(PI) and (P2) arc important for the subsequent stages 
of this analysis. 

S=OoV,T=O. (7) 

A sufficient condition for the occurrence of natural 
convection is therefore expressed in the form 

S#O*q#O. (8) 

Now by using (7) one obtains 

V,T#O=-q#O. (9) 

The main conclusion resultiug jkm (Y) is that the 
necessq~ coriditio~7 $or tl7e c~ristence qf u n7otio,iless 
stutc is: V, T = 0 V X E D. As a result, whenever 
horizontal thermal gradients exist. natural convection 
currents are produced. An example of cases when 
natural convection exists unconditionally are vertical 
layers or rectangular domains subject to different 
values of temperature at the side walls. As a result of 
this horizontal temperature difference the heat will 
be transferred initially mainly by conduction, thus 
creating horizontal thermal gradients in the fluid-satu- 
rated porous domain, i.e. V,, T # 0. These horizontal 
thermal gradients create unconditional convection 
based on the previous analysis. A horizontal infinite 
layer or a rectangular porous domain heated from 
below are examples of cases when the equations and 
the appropriate boundary conditions can be satisfied 
by motionless conduction solutions, leading to van- 
ishing of any horizontal thermal gradients in the 
domain. In these cases the motionless conduction 
solutions represent the equilibrium or basic solutions, 
whose stability should be investigated. Obviously. due 
to the non-linear nature of the thermal convection 
effect, represented by the non-linear coupled differ- 
ential equations, non-uniqueness of the possible solu- 
tions may result and the stability analysis may con- 
tribute to determine which solution is expected to 
occur. 

For horizontal infinite layers or rectangular porous 
domains with perjkctly insulated side walls heated 
from below, the linear stability analysis shows that 
fluid motion is possible only if the Rayleigh number 
exceeds a critical value. Theoretical and experimental 
investigations show that supercritical Rayleigh num- 
ber values lead to multicellular fluid motion. The linear 
stability analysis does not usually predict the ampli- 
tude and direction of the convective flow. No motion 
is expected when the fluid is heated from above, 
regardless of the value of the Rayleigh number. In 
such cases the vertical temperature gradient resulting 
from heating the upper boundary and/or cooling the 
lower boundary is considered to be a stabilizing tem- 
perature gradient. 

However, for pe~fectl~~ conducting side walls differ- 
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FIG. I. A two-dimensional porous domain with perfectly 
conducting side walls. 

ent conclusions can be drawn. Let us consider a rec- 
tangular domain DE R’ (Fig. I) and the following 
boundary conditions : T = T,, at I = 0, T = 7, at I = I 
and T = T,,(Z) at .Y = 0 and s = L. It can be observed 
that the same temperature is imposed on both side 
walls so there is 110 /rori:orzrol remperuture cl[fi~errce 
between the side walls. One may distinguish between 
heating from below, i.e. T,, = I and T, = 0, and heat- 
ing from above, when T, = 0 and T, = I. Then it will 
be shown that with perfectly conducting side walls. 
except for the linear distribution of temperature on the 
side walls. T,, # (i”, - T,): + T,,, natural convection 
occurs independently of the value of the Rayleigh 
number (obviously different from zero). To show this, 
the proof is given by negation for the extreme case of 
heating from above. The proof of heating from below 
is similar. Therefore, upon using T,, = 0 and T, = I 
pertaining to heating from above, it will be proved 
that if 

then 

Let us assume that under condition (IO) a motionless 
solution (q = 0) is possible. Then the heat is trans- 
ferred only by conduction and the steady state energy 
equation (3) reduces to 

V’T= 0. 

However, the necessary condition for the existence 
of a motionless state resulting from equation (9) is 
expressed for a two-dimensional domain in the form 

(13) 

Moreover, if (13) holds then also a’T/?s’ = 0 V X E D. 
Substitution of these conditions into (I 2) yields 

of which solution is given by the linear profile 

T= z. (15) 

This solution, which is consistent with a motionless 
state (q = 0). satisfies the boundary conditions at 
s = 0, L if and only if (i) T, = : or (ii) 
(c’T/?u), - ,,,,. = 0. The first case. (i). is contradictory 
to the data as expressed by (10). The second case. 
(ii). dots not correspond to perfectly conducting side 
walls. WC may conclude that the results cxprcsscd 
by conditions (i) and (ii), found by assuming that a 
motionless state is possible. are contradictory to the 
basic assumptions. Thw/im~. LI w~~iodes.s strlte is nut 
possible in cowmlion with the c/cm wnsiclcwd. 

A prescribed constant temperature on the lateral 
boundaries, T = T,, = const. (the same value at both 
lateral walls), is an example of a problem for which a 
motionless solution is not possible, regardless of the 
vertical temperature gradient resulting from the 
imposed top and bottom boundary conditions. Prac- 
tically, this situation is obtained particularly in thin 
lateral walls made of materials which have high thcr- 
mal conductivity. This specific case is considered in 
the following numerical solution. However. before 
presenting the numerical solution a comparison 
between this case and the analytical results obtained 
for the case of imperfectly insulated side walls is pcr- 
formed. 

3. A WEAK HEAT FLUX THROUGH THE 
SIDE WALLS 

For a constant prescribed temperature on the side 
walls (perfectly conducting side walls). a strong heat 
flux occurs on the lateral wails. However, with imper- 
fectly insulated side walls the lateral heat flux is weak 
and an analytical solution is possible through the 
weak non-linear theory. The detailed analysis and 
solution for the imperfectly insulated side walls case 
was presented by Vadasz and Braester [IO]. Only the 
minimum necessary results will be repeated here for 
the purpose of comparison with the perfectly con- 
ducting side walls case. The governing equations (I). 
(2) and (3) for a two-dimensional rectangular domain 
were expressed for convenience in terms of a stream 
function and temperature. A Cartesian coordinate 
system was selected such that the vertical axis, :. is 
collinear with the gravity axis and directed upwards ; 
then 6, = -i, and in (2) 0,*X = -z. Applying the 
curl operator to equation (2) and using the definition 
of the stream function I/I: LI = &,!I/&, )I’ = -6t,b/~Js. 
where u and II’ are Darcy’s flux components in the s 
and z directions, respectively, one obtains from (2) 
and (3) 

In terms of $, the flow boundary conditions are ex- 
pressed in the form : I+II = 0 V X E B, and the thermal 
boundary conditions for heating from below are 



: = 0: T= I; : = I : T= 0; .\‘= 0: c’T,(:.Y = I),,(:), 
.\- = L: ?T/?.Y = 0, (1). The side walls heat Rux is 
rcprescntcd by a sine Fourier expansion in the Corm 

II,,(:) = 1 (I,,, sin (X-n:); II,(z) = C II,, sin (liar:). 
1-I I- I 

(18) 

To bc consistent with a basic motionless state. the side 
wall heat lcakagcs O,, and 0, arc assumed to bc small. 
i.e. (I,,(:) c I. (I,.(:) CC I V :E [O. I]. The dcpcndcnt 
variables $ and T wcrc cxpnndcd in a power scrics 
in terms of a small paramctcr. L defined as t:’ = 
(Rn- Rn,)/Ro. where Ra, is the characteristic value 
or Rrr obtained from the linear stability analysis. 
Rn, = ~(~(171~+12~L’)‘j111~L’. where HI and 11 arc the 
wave numbers in the s and z directions. rcspectivcly. 
and L is the aspect ratio (Icngthjheight). The Fourier 
cocfficicnts in (18) wcrc also expanded in a power 
series or t: and the Raylcigh number was expanded in 
a finite power scrics. Therefore, the expansions arc 
expressed in the form 

[t,bT T. II,,,, fl,L] = [t,V”‘. T”“. 0:;;‘. fj;‘;‘] 

+#“‘. T’ I’, 0:;‘. O::‘] 

ft?[~,P”. T”‘. f~~;‘.f~~~;l] 

Ro = Ro, + Rr,:“’ [x2 + eJ + + I?‘] (20) 

where ti/“” and T”” rcprcsent the basic motionless 
solution, i.e. 9”” = 0 and T”” = I-:. In order to 
avoid an inconsistency and occurrence of resonance 
at orders I: and EC?. (I$‘. 0::‘. fl$’ and f$? must vanish. 
Thus the heat leakage through the side walls was 
introduced at order f: I. i.e. f&l’ # 0 and fl:.:’ # 0. while 
fJ$’ = Oli = O\i’ = O:.:’ = 0. Introduction of these 
expansions into equations ( 16) and (I 7) and collecting 
terms which include like powers of E leads to a hier- 
archy orpartial diffcrcntial equations for the diffcrcnt 
orders. The solutions of the homogeneous equations 
at order E subject to homogeneous boundary con- 
ditions lead to the following cigenfunctions : 

$’ ” = A:,:,/(T) sin (~rr.~\-lL) sin (117r:) ; 

T’ ” = B!:,:(T) cos (nm.~/L) sin (117cz) 

where the amplitudes A],!: and B!,&,’ arc allowed to vary 
slowly over the large time scale T = E2/ in order to 
overcome time non-uniformity of the solutions. At 
this stage the amplitudes are still undetermined and 
their values will be obtained later from a solvability 
condition of the equations at order E’. 

The qualitative form of the solutions at order E’ is 
the same as for order E except for an additional term, 
B),?,, sin (2r7rr:). in the expression for T”’ which occurs 
as a result of the non-homogeneous type of equation 
for T”‘. The equations at order E) are 

and their right-hand side rcprcscnts their non-homo- 
gencous part. which consists of known lower order 
solutions I/J’ I’. T”‘. $“’ and T”’ and their derivatives. 
At this order the heat leakage through the side wails is 
introduced Icuding to the l’ollowing boundary con- 
ditions : 

The remaining boundary conditions are homogen- 
eous. i.c. @ “(0. 1) = $’ “(L. 1) = I)’ “(.Y, 0) = $’ ‘I 
( .L I ) = 0 and T”‘(.v. 0) = T”‘(.\-. I ) = 0. Since 
equations (21) and (21) at order ? arc non-homogcn- 
eous versions of the equations solved at order E. a 
solvability condition must be satisfied. This condition 
constrains the amplitude of the solution at order E 
and enables its determination. The solvability con- 
dition is derived by multiplying (?I) by I)“’ and 
(27) by Rrr.T ‘I’. 
domain SE’[O. 

integrating these equations over the 
L]. :E[O. I] and adding them. As a 

result of these operations and by some mathematical 
manipulations. use of the second Green’s identity. 
integration by parts. boundary conditions and the 
solutions at O(E). the solvability condition for the 
steady state may bc prcscntcd in the simpliticd form 

A”-<A = I/ (23) 

whcrc the following notation is used for convcnicncc : 

16(,,1’+,1L’) 
p/z-~ -~ [O ,,,, - ( - I )“‘0,,,] : fl 

(1 = $()(J’. “1, , ,,I, . () = )-‘()lJl. 1.11 ’ /.I, (34) 

In (24), A represents the O(c) amplitude. < is the 
measure of how distant Rrr is from its critical value 
(c = 0 at Ru = Rcr,. 5 < 0 [or Rrr < RCI, and < > 0 
for Ro > Ro,) and ,I rcprcscnts the small O(E’) heat 
leakage through the side walls. As one may observe 
from the expression of rl in (24). in spite of the general 
expansion for the heat leakage through the side walls 
which was allowed to include all possible Fourier 
modes, only those modes which reinrorcc the natural 
modes of convection, i.e. li = II. affect the amplitude 
equation through 11. In the following. the particular 
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cast of symmetrical heat lcakagc through the side 
walls will be considered. i.e. (I,,,, = - 0 ,.,, = I),, and 
,I = -[33(177~+/72L2)0,,J/~ V m = 2, 4. 6, 8 .; ‘1 = 0 
V 177 = 1. 3. 5, 7 as this is associated with sym- 
metrical heat fluxes occurring in the perfectly con- 
ducting case. For perfectly insulated side walls. ‘7 = 0, 
leading to the amplitude solution of equation (23) in 
the form .4 = k<’ ’ for < > 0 (RN > Rn,) and 4 = 0 
for < < 0 (Rrr < Ru,). This solution is represented by 
the dotted curves in Fig. 2. showing a bifurcation of 
the amplitude solution towards two possible 
branches. As a result, the direction of the flow (clock- 
wise or anticlockwise) for supercritical conditions is 
undetcrmincd as the amplitude of the convection. A. 
can be positive or negative corresponding to the 
respective branch of the bifurcation (A = +<’ ’ or 
A = -<’ ‘). For the imperfectly insulated case q # 0 
and according to (23) the motionless state A = 0, 
dots not satisfy the equation. The solution of the non- 
homogeneous cubic equation (23) is represented by 
the full curves in Fig. 2. It can be observed that the 
sharp transition at the critical value of Ru(< = 0) in 
the perfect case (17 = 0) is replaced by a smooth 
transition through Ru, (5 = 0) in the imperfect case 
(rl # 0). In the latter case (with imperfectly insulated 
side walls) a non-zero subcritical amplitude was 
obtained for Rn < Ra,. For supcrcritical Ru values 
(Rn > Rcr,). a unique steady solution was obtained 
as long as 0 < < < 3(r7/2)’ I. This unique solution is 
indcpcndcnt of the initial conditions associated with 
the corresponding time-dependent amplitude equa- 
tion (see Vadasz and Braester [IO]) and therefore in 
this range of < values, r/re~flon~ ifrterzsi/j, UN/ tfirecrior7 
ore uhsolulel~~ cot7 trolled bj- ll7e Dou77dur~~ it77per/ivtior7 
tI71.01q~Yh ‘1. Tl7e higher tl7c~ side HYIIIS l7ec11,flu.r 117~ ,vi&r 

117~ domuir ,/Or 5 whcrc this cordusiot~ upplies. An 
immediate implication resulting from this solution is 
that a convection cell rotates clockwise or anti- 
clockwise depending on whether the heat flux at the 
side walls is directed outwards or inwards to the 
domain. For example, considering the first mode of 
the sine scrics representing the side walls heat flux 
with a positive value of (I,, i.e. ((:T/?.u),=, = 0, 
xsin(rr:)and(i:T/Sr),_,.= -0,sin(rr:)withO, >O. 

a heat flux directed from the domain outwards is 
obtained on the side walls. As a result, according to 
the conclusions of the weak non-linear solution this 
heat flux should create an anticlockwise convection in 
the vicinity of the left side wall (at .r = 0) and a 
clockwise convection near the right side wall (at 
.Y = f.). When 0, is negative (0, < 0). the flow direc- 
tion of the convection cells reverses, i.e. it is clockwise 
near the left side wall and anticlockwise near the right 
side wall. An important particular case is when the 
fundamental is absent in the sine series expansion of 
the side walls heat flux. Then the second mode of the 
sine series becomes dominant, i.e. (dT/a.~), _ ,) = O2 sin 
(2n:). ((:T/c’.\-),=,. = -02 sin (2~:) with (I2 > 0; this 
implies that the heat flux is directed outwards at the 
lower half of the domain, i.e. for :E [0, l/2] and 
inwards at the upper half of the domain, i.e. for 
:E [l/2. I]. This type of heat flux inducts, according 
to the weak non-linear analysis. the second vertical 
mode of convection consisting of two overlaying rows 
of convection cells, the lower rotating anticlockwise 
near the left wall and clockwise near the right wall 
and the upper rotating clockwise near the left wall 
and anticlockwise near the right wall. Assuming that 
these results will remain qualitatively unchanged even 
for strong heat fluxes through the side walls they can 

FIG. 2. Graphical representation of the amplitude solutions in the 5-A plane. 
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be applied for confirmation of the numerical results 
obtained for the perfectly conducting case. to be pre- 
sented in the next sections. 

4. PERFECTLY CONDUCTING SIDE WALLS 

A prescribed constant temperature on the side 
walls. T = T, = const. ([Ire sunre value ut both side 
~ralls), is an example of a problem with perfectly 
conducting side walls. For this case a strong heat flux 
occurs on the side walls, and a motionless solution is 
not possible regardless of the vertical temperature 
gradient resulting from the imposed top and bottom 
boundary conditions. 

The problem to be solved numerically is formulated 
as a two-dimensional initial boundary value problem 
in terms of the stream function $ and temperature T, 
according to equations (16) and (17). These equations 
form the coupled system to be solved numerically 
subject to the impermeability boundary condition 
I+/I = 0 V X E B and the thermal boundary conditions, 
which consist of two different cases : 

heating from below : 

T,,=l, T,=O 

heating from above : 

T,=O. T,=l (25) 

where T,, and T, are the bottom and top temperatures, 
respectively. For each of the above cases three possible 
subcases, related to the temperature on the lateral 
boundaries, are considered 

T,, < 0 (26a) 

I < T,, (26b) 

0 < T,, < I. (26~) 

These three subcases correspond to the different direc- 
tions of the heat fluxes at the side walls, e.g. when the 
heating is from below, case (a) represents a heat flux 
oriented from the domain outwards, case (b) is com- 
patible with an inward heat flux at the side walls and 
in case (c) the heat flux is outwards at the bottom half 
of the side walls (ZE [0, l/2]) and inward at the top 
half of the side walls (ZE [l/2, I]). For heating from 
above the directions of the heat fluxes at the side 
walls remain unchanged for cases (a) and (b) but are 
reversed for case (c). 

The numerical method of solution consists of a 
fully implicit finite difference scheme for the energy 
equation, (17) and centered differences for the elliptic 
stream function, equation (16). A uniform spatial 
mesh is used throughout the rectangular domain, i.e. 
A.u = AZ = AL. By using a single index notation to 
represent the mesh points, the following difference 
equation is obtained for the temperature : 

u ,,,- ,t,,T,‘:,,! +qi- , T,?,’ +a,.,T:+ ’ +a;.i+ , T::,’ 

+u,,,+. T/z; = T/Vi= 1,2,...,MxN (27) 

where (M+I) and (N+l) are the number of mesh 
points in the .Y and : directions, respectively. The 
indices (j+ I) and (j) denote the present and the 
preceding time, respectively. The coefficients of T’+ ’ 
are expressed by 

u,,, ,v = -(m,+r’); a ,,,-, = -((sw,+r); 

(lb, = (I +4r); u,,,+ , = (SW,-r); 

uI,.,+ .” = (% -r) (28) 

where I’ = At/AL’, s = At/?AL and u,. II*, are the mesh 
point values of the horizontal and vertical com- 
ponents of q. respectively. The difference equation 
(27) represents a system of (M x N) linear equations 
for the (Mx N) unknown values of temperature 
T” ’ (i = I. 2. . M x N) at the mesh points. The 
components of the right-hand side vector consist of 
the known values of temperature at the preceding time 
step and additional terms which include the values of 
the temperature on the boundary. These additional 
terms should be transferred from the left-hand side of 
(27) whenever boundary mesh points appear. The 
coefficients, (28), form a five band matrix. However, 
they depend on the solution of the stream function 
equation through II, and w,. The difference equation 
for the stream function is obtained from (I 6) by using 
centered differences. Then, with the single index 
notation, it can be expressed in the form 

= Rue [T,?,; - T;$J Vi = I, 2,. , M x N. (29) 

This equation represents a system of (M x N) linear 
equations for the unknown values of $,!+ ’ at the mesh 
points i = 1, 2, . . , Mx N. The coefficients form a 
five band matrix and they are constants; however, 
the right-hand side of equation (29) depends on the 
unknown temperature values T’+ ‘. Therefore, the two 
systems of equations (27) and’ (29) are coupled. An 
iterative procedure is used at every time step to solve 
this coupling. Therefore, at every time step equation 
(27) is solved for T,‘+’ by using a band solver [l9]. 
The values of U, and IV, are initially identical to the 
previous time step values, i.e. u;, rr:. Then the tem- 
perature values are introduced into (29) and a solution 

I+’ for vt is obtained by using the same band solver. 
New values of ni and 11’~ are calculated by introducing 

j+’ +, into the centered difference form of the stream 
function’s definition. This procedure is repeated with 
the new values of ui and IV, until the maximum relative 
difference between two consecutive iterations is less 
than a prescribed tolerance E,,, i.e. 

and 

max ,~,xN~I~~~+‘I/I~:*‘II < &,t. i= I.?. (30) 
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Then the solution is advanced by an additional time 
step until the steady state is achieved. according to the 
following criterion : 

max ..,,..P~” --IcI:l/lti:+ ‘II < 6 (31) I- 1.2. 

where 5 is the steady state prescribed tolerance. 

5. RESULTS AND DISCUSSION 

The results obtained by using the numerical method 
of solution described in Section 4 arc presented for 
two different cases, i.e. heating from below (r,, = 1, 
r, = 0) and heating from above (r, = 0, r, = I). 
Three subcases related to each of the foregoing cases 
are considered according to (26). Therefore, three 
different values of the lateral wall temperature were 
imposed : 

(i) r,, = -0.5. (ii) T,V = 1.5. (iii) T,, = 0.5 

such that cases (i). (ii) and (iii) correspond to (26a), 
(26b) and (26~). respectively. 

All the cases were solved for an aspect ratio of 1 : 2 
(L = 2). and the following grid and tolerance par- 
ametcrs : AL = 0.05 (41 x21), Ar = 0.001 and 
E,, = 0.001. Finer grids were occasionally used for 
evaluation of accuracy and numerical error analysis. 
AH the runs started from motionless initial conditions 
and from uniform initial temperature, which was set 
equal to the value of r,, corresponding to each specific 
case. 

Several runs have been performed for different 
values of the Rayleigh number. Subcritical convection 
was obtained when Ru = 30 (Ra, = 47~‘). as a result 
of the lateral boundary heat flux. A supercritical 
steady state solution is presented in Fig. 3 for Ra = 50 
and r,, = -0.5, corresponding to subcase (i) and to 
(26a). The isotherms and streamlines show that the 
solution consists of two convection cells. The direction 
of rotation of the left cell is anticlockwise as predicted 
analytically through the weak non-linear solution. 

Ra=50 

T,= 

T,= -0.5 

T, = 0 

Tt, = 1 

T, = 0 

Tb = 1 

T, = -0.5 

T, = -0.5 

A Y’,, = 4.43 El Y,, = -4.43 
FIG. 3. Graphical representation of the numerical solutions for the flow and temperature fields for heating 
from below. corresponding to Ru = 50 and r, = -0.5. (a) Ten isotherms equally divided between r,,,,, 
and T,,, (r,,,,, = -0.5, T,,,, = I). (b) Ten streamlines equally divided between $,,. and rj,.,, (JI,,, = -4.43, 

JI,,, = 4.43). 
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T, =0 

T,= 1.5 

T,= 1 

T, =0 

(a) 

T,,,= 1.5 

T, = 1.5 

T, = I 

q Ymin = - 4.43 A Y,,= 4.43 

FIG. 4. Graphical representation of the numerical solutions for the flow and temperature fields for heating 
from below, corresponding to Rn = 50 and r, = I .5. (a) Ten isotherms equally divided between r,,,,, and 

L, (TIM = 0. 7-“,.,, = 1.5). (b) Ten streamlines equally divided between (I,,,,, and $,,,&, ($,,, = -4.43. 
II/,.<, = 4.43). 

The solution for the same Rayleigh number top part. This change of sign in the heat flux along 
(RN = 50), but for a different value of the lateral the lateral walls is responsible for the creation of the 
boundary temperature, T, = 1.5, corresponding to second convection mode. A relatively large value of 
subcase (ii) and to (26b) is presented in Fig. 4. Two Ra was needed to obtain convection cells throughout 
convection cells were also obtained for this case the entire domain. When Ra = 100 and T,v = 0.5, the 
(r,. = 1.5). However, the left cell rotates in a clock- results show (see Fig. 6) that the convection is local- 
wise direction. This represents an opposite direction ized in the vicinity of the lateral walls. The second 
of rotation when related to the first case (r, = -0.5. vertical mode was also obtained for this case. This is 
Fig. 3). This change in flow direction is related to the the reason for the higher Rayleigh number needed for 
side walls heat flux and is in complete agreement with convection to fill up the entire domain, since a higher 
the analytical predictions corresponding to the weak critical Rayleigh number corresponds to the second 
heat flux at the side walls. The flow field and tem- vertical mode ([Ra,],,=? = 16n’). For subcritical 
perature solutions for T,v = 0.5 and Ra = 200 are pre- values of Ra, convection appears as a localized effect 
sented in Fig. 5, from which it is observed that the in the vicinity of the lateral walls. As the critical value 
second vertical mode of convection is obtained. This of Ra is reached, the convection spreads into the 
second vertical mode, which consists of two rows of interior region and fills the entire domain. This result 
convection cells, is also a characteristic result which suggests that disturbances related to the first vertical 
depends on the value of temperature imposed on the mode, which inherently exist when using a numerical 
lateral boundaries. In this case T, = 0.5 ; thus the heat solution, were naturally suppressed by the heat flux 
flux at the side walls is directed outwards for the resulting from the side walls, therefore imposing the 
bottom part of the domain and downwards for the second vertical mode of convection. However, it 
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Ra=ZOO 

coarse grid (41x 21 ) 

T, = 0 

(4 

T, = 0.5 T, = 0.5 

T, = I 

T, = 0 

T, = I 

A Yy,_ = 3.03 I4 Yy,, = - 3.03 

FIG. 5. Graphical representation of the numerical solutions 
for the flow and temperature fields for heating from below. 
corresponding to Ro = 200 and I-, = 0.5. (a) Ten isotherms 
equally divided between L&,,, and T,,.(T,,,,. = 0. T,,, = I). 
(b) Ten streamlines equally divided between +,,,,. and JI,,, 

(I),,. = -3.03. lj,,, = 3.03). 

Ra= 100 

T, =0 

Tw=..5pJ 

T,= 1 

T, =0 

(a) 

T, = 0.5 

(b) 

T, = 0.5 T, = 0.5 

T,= 1 

BY, = 1.17 El Y& =- 1.17 

FIG. 6. Graphical representation of the numerical solutions 
for the Row and temperature fields for heating from below, 
corresponding to Ru = 100 and T, = 0.5. (a) Ten isotherms 
equally divided between T,,,,, and T&T,,,,, = 0, T,,,,, = I). 
(b) Ten streamlines equally divided between I$,,,,. and JlrnaX 

(I),,” = - 1.17, I(/,,, = 1.17). 

should be mentioned that this result was obtained 
when using initial conditions of uniform temperature 
and no initial Row in the domain. Therefore it is not 
recommended to draw any general conclusion based 
on this result. 

A further verification of the accuracy of the numeri- 
cal results was performed for this case by using a finer 
grid (At = 0.025, 81 x 41) with the same parameters 
(Ru = 200, T, = 0.5). A comparison of the results 
obtained by using the coarse (41 x 21) and the finer 
(81 x41) grids showed that the maximum relative 
differences in the values of the stream function and 
temperature were less than 2%. 

5.2. HeahgJrom abooe 
No convection is expected when heating from 

above, if the lateral boundaries are insulated. 
However, with perfectly conducting lateral bound- 
aries pertaining to the present investigation, natural 
convection occurs as proved in Section 3. The numeri- 
cal steady state solution for this case, with Ra = 100 
and T, = 1.5, is presented in Fig. 7. Two convection 
cells were obtained, one adjacent to the left wall and 
the other to the right wall. By changing the value 
of the side wall temperature to T, = -0.5, it was 
observed that the flow direction is reversed. An evalu- 
ation of the accuracy of the numerical results was 
performed for this case by using a finer grid 
(AL = 0.025, 81 x41) with the same parameters 
(Ru = 100, T, = -0.5). The maximum relative 
differences in the values of the stream function and 
temperature between the coarse and the finer grids 
were less than 6%. For T, = 0.5 and Ru = 200, the 
second vertical mode is obtained (see Fig. 8), while as 
expected the flow direction of the convective cells was 
reversed when compared to the corresponding case 
(26~) for heating from below (Fig. 5). However, no 
more than two consecutive cells in the horizontal 
direction could be obtained. They are located adjacent 
to the lateral walls. This is the main difference between 
heating from below and heating from above. For the 
former (heating from below), multiple cells in the 
horizontal direction were created for supercritical 
values of the Rayleigh number and two horizontally 
consecutive cells of limited lateral extent adjacent to 
the side walls characterize the subcritical conditions. 
However, for the latter case (heating from above), 
only two horizontally consecutive cells adjacent to the 
side walls were obtained with possible double cells in 
the vertical, direction depending on the value of T,. 
These cells filled the entire porous domain. A finer 
grid (AL = 0.025, 81 x41) was also used in this case 
in order to evaluate the accuracy of the results leading 
to a maximum relative difference of 2% in the values 
of the stream function and temperature. The com- 
parison of the numerical results corresponding to a 
strong heat flux through perfectly conducting side 
walls to the analytical solution obtained for a weak 
heat leakage through imperfectly insulated side walls 
shows qualitative consistency. As far as the flow direc- 
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T, = 1.5 

T,= 1 

Tt, = 0 

T,= 1 

(a) 

T.,, = 1.5 

(b) 

T, = 1.5 

T,,=O 

q Y’,i,=-3.6 A ‘Pm = 3.6 

FIG. 7. Graphical representation of the numerical solutions for the flow and temperature fields for heating 
from above, corresponding to Ro = 100 and r, = 1.5. (a) Ten isotherms equally divided between T,,, 
and T,,,,, CT,,, = 0. T,,,,, = 1.5). (b) Ten streamlines equally divided between $J,,. and $I,,, (II/,.,. = -3.6, 

e,,,,, = 3.6). 

tion and the resulting wave number are concerned, 
the results are identical. Moreover, the side walls heat 
flux or temperature value was found to have a strong 
control over the flow intensity, direction and wave 
number. Therefore, carefully extending the validity of 
the analytical solution that is restricted to weak heat 
fluxes to the perfectly conducting side walls case pro- 
vides a tool for a qualitative analysis even beyond the 
validity domain’of the solution. 

The conclusions from the numerical study of 
Kimura and Bejan [12], that the convection resulting 
from the imposed side wall temperature difference 
cannot be stabilized by imposing a stabilizing tem- 
perature gradient through heating from above, was 
confirmed by our results and even extended to the 
extreme case where no side wall temperature differ- 
ence is imposed. Even then convection persists as a 
result of horizontal temperature gradients that are 
created in the fluid domain. Since results similar to 
Kimura and Bejan’s [ 121 were achieved experimentally 
by Ostrach and Raghavan [I31 for a fluid in a non- 
porous domain, it remains for future research to show 

whether our conclusions can be qualitatively extended 
to fluids in non-porous domains as well. 

6. CONCLUSIONS 

A study of natural convection in a porous medium 
domain heated from below or above and bounded 
by perfectly conducting side walls was presented. A 
comparison was performed between the perfectly con- 
ducting side walls case associated with strong heat 
fluxes through the side walls and analytical results 
pertaining to the imperfectly insulated side walls case 
(weak heat fluxes through the side walls). The com- 
parison shows good qualitative agreement between 
the analytical and the numerical results. It was shown 
that for perfectly conducting side walls, except for a 
particular temperature variation on these side walls, 
natural convection occurs regardless of the value of 
the Rayleigh number and regardless of whether the 
fluid is heated from below or from above. The numeri- 
cal solutions for identical uniform temperatures 
imposed on both side walls showed that when the 
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Ra = 200 

T, = I 

(a) 

T, = 0.5 T, = 0.5 

T,, = 0 

T, = I 

lb) 

T, = 0.5 T, = 0.5 

T, = 0 

lg v ,,,,,, = 1.43 a Y,,.,\ = 1 .Jj 

FIN;. X. Graphical rcprcscntalion of the numerical solutions 
Ihr the llow and temperature liclds for heating from above. 
corresponding to Rtr = 200 and ‘f,, = 0.5. (a) Ten isotherms 
equally divided between r,,,,, and T ,,,,,, (T ,,,,” = 0. T “,,,, = I ). 
(b) Ten strcamlincs cclually divided bctwccn II/,,,, and lb,,,.,, 

(dJr.,r, = - 1.43, lb,,,.,, = 1.43). 

Ruid is hcatcd from below. a subcritical Row dcvclops 

mainly in the vicinity of the side walls. Under supcr- 

critical conditions, the motion amplilics and cxtcnds 

over the entire porous domain. The solution was 

found LO depend on the value of the temperalure 
imposed on the side walls. This dcpcndcncc was 

csplaincd in lcrms of the side wall heat flux direction 

by cxtcnding the validity of the analytical results 
obtained Tar impcrfcctly insulated side walls to the 
present cast. When the fluid was heated from above 

it was not possible to obtain a motionless solution, a 

result which is consistent with the analykal con- 
clusions. 
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